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The general path-integral formalism for real-time dynamics for a quantum
system in a fermionic environment proposed previously is investigated by using
a new method called local adiabatic transformation. This method is based on
the observation that in the long-time limit (the time scale of the system is much
larger than that of the environment, typically characterized by the inverse of the
cutoff frequency of the environment), most degrees of freedom of the environ-
ment will follow the dynamics adiabatically. This feature is utilized by transfor-
ming the original problem of coordinate coupling into a problem of velocity
coupling. This is achieved by making some simple unitary transformation on the
fermion field (before path-integrating out of that field). By doing perturbations
on the new problem, all the previous important results are recovered. Further-
more, generalizations to more realistic situations [for example, a particle travel-
ing over a large distance and coupled to a Fermi gas through the phase factor
exp(ik - R) (the coupling may involve many channels of angular momentum)]
are considered and significant results obtained.

KEY WORDS: Adiabatic transformation; fermion bath; Grassmann algebra;
influence functional; path integral; real-time density matrix.

1. INTRCDUCTION

Quantum dynamics of a general particle coupled to a dissipative environ-
ment involves, in general, a large number of degrees of freedom, which sub-
stantially complicates the problem even if the original system might be very
simple, for example, a two-state system. Recently, this topic has attracted a
great deal of interest in the context of macroscopic quantum coherence
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(MQC) and macroscopic quantum tunneling (MQT),? since a macroscopic
quantity cannot be isolated from its environment. There aiso has been
interest in the behavior of a heavy particle (or defect) inside or on the sur-
face of a solid, which involves coupling(s) to either the metallic electrons or
the phonon modes in the solid.> Many introductory comments on these
two fields can be found in the literature (especially those in our previous
work ®).

Due to the profound differences between Bose and Fermi statistics, it
1s in general necessary to study the two major kinds of “heat baths,” either
boson or fermion baths. A boson bath is usually represented by a set of
harmonic oscillators, whereas a fermion bath consists of fermion
excitations obeying anticommutation rules. Nevertheless, it is generally
believed that if the coupling between a system and its environment is
sufficiently weak, any environment can be cast into a bath of harmonic
oscillators.“*®Moreover, it has been shown that for a certain kind of
coupling, a fermion bath can be cast into one or several boson baths (no
matter how strong the couplings), provided one makes suitable mappings
between the corresponding couplings.*”® Once such mappings are
achieved, the fermion-bath problem can be greatly simplified by utilizing all
the corresponding properties of the boson bath.

Most of the previous work >”®) along this line is based on the solution
of a special type of singular integral equation. However, there are severe
limitations on their generalizations. For instance, it is very difficult to
explore the transport behavior of a particle with coupling to a fermionic
environment. In addition, the rigorousness of the solution procedure has
been subject to some suspicion (despite the considerable amount of
algorithm associated with these works).

In this work, a new method is introduced to the fermion bath
problem. Our goal is to give a rather simple and physical picture for the
previous results. This is achieved by employing the previously obtained
path-integral formalism for the fermion-bath problem.® In this method
(which shall be called local adiabatic transformation), the fermion field in
the presence of coupling is diagonalized at an arbitrary given time.* Based
on this, a new interaction (between the system and the environment) in the
form of velocity coupling appears. One then can integrate out of the trans-
formed fermion field and evaluate the corresponding Feynman influence

2 There is a rich literature in the field of MQT and MQC. For general interest, see Refs. 1-3;
special topics related to this work will be mentioned subsequently.

3 A nice discussion of this is given by Sols and Guinea.®

4 Note that the transformation is performed in the framework of the path-integral formalism;
thus, no operators are involved. Direct unitary transformation on an operator basis has not
succeeded in reducing the complexity of the problem.
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functional **'% via a simple second-order perturbation. Quite remarkably,
it recovers all the previous important results, and yet serves as a promising
approach to further developments, As an example, the transport of a
particle in a Fermi liquid is investigated,® where the previous method falls
into difficulties.

This paper is arranged as follows. In Section 2, the basic path-integral
formalism for the real-time density matrix is reviewed. The local adiabatic
transformation is introduced in Section 3. The simplest situation, where all
the coupling matrix elements are identical, is considered first in Section 4.
Section 5 involves the more general case where many angular momentum
channels enter. In Section 6, we study a more realistic example, where
the coupling is realized through the phase factor exp(ik-R). Finally, a
discussion is given in Section 7. In the Appendix, a simple exercise related
to the problem of phase shift is presented.

2. FORMULATION OF THE DYNAMICS

In this section, we review briefly previous work'® on the path-integral
formalism for the real-time density matrix. We use the same general
Hamiltonian as before (the chemical potential term —uN, has been
included by setting the Fermi surface at ¢, equal to zero):

Q Q
H=—+V(#)+ Y Cy*)bb,+ Y beb,+ Hy({6],5,}) (2.1)
J= =

where the notations are standard and transparent. To study the real-time
properties of this kind of complete quantum system, the most relevant
quantity to look into is always the real-time density matrix, given via the
definition (taking fi=1)

p(x, y, 1) = (x| exp(—iH1) p(0) exp(+iH1) | y) (2.2)
Note that Eq. (2.2) is still an operator equation with respect to the environ-

ment. Concerning the initial density matrix §(0), we choose most conven-
tionally the factorized one

(X'} p0) |y = B(x', ¥', 0) exp(—BA.) (2.3a)

5 Only the bulk problem is studied here. The surface problem, e.g., a particle traveling on the
surface of a metal, is mentioned in the last section.
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where H, is the Hamiltonian for the environment only [as can be found in
Eq. (2.1)]. This gives

plx, y, 1) = f dx' dy’ x| exp(—if1) |x")[exp(—BH.)]
x (y'l exp(iflt) |y p(x', ¥, 0) (2.3b)

Notice that nothing is particular about this choice. One can of course
replace the factor exp(—pH,) by exp{—B[H.,(x')+ H,]} to emphasize
that initially the environment is under equilibrium with the particle at the
position x’ (which may be the better choice when the coupling between the
particle and the environment is strong).

Because the behavior of the environment is beyond the scope of
interest, the environmental degrees of freedom should be traced out,

plx, y, 1) =Tr,[p(x, y, )]

=[x dy' 5, ', 0) J(x, 3, 6%, 7, 0) (24)

where p(x, y, t) is known as the reduced density matrix for the system
alone and the function J{x, y, t; x', ¥, 0) is given by

J(x, y, ;%' ¥, 0)
=Tr,[exp(—BH,) {y'| exp(+iHt) |y><{x| exp(—iH1) [x'>]  (2.5a)

It is now a matter of expressing the right-hand side of Eq. (2.5a) in terms of
path integrals. This procedure is quite lengthy, but somewhat straightward
(see Appendix A of Ref. 5). We then arrive at the formula

Db(t) Db(t) exp <i 3@ dt B mz? — V(z)]

wif | % e —e)bim 5 €y bit,— H (01,0 |)
- . (2.5b)

where the integral contour y is the so-called Baym-Kadanoff contour, as
shown in Fig. 1, and § neglects the segment (0 — ig, —if); the path integral
over the fermion variables {b], b;} is defined in Grassmann algebra. Note
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Fig. 1. A schematic representation of the contour y (Baym-Kadanoff contour). Note that
the quantity ¢ is infinitesimal. Also, the integral § does not include the infinitesimal segments
between the ends at 0, &

that for § we also exclude the infinitesimal segments between those ends at
0, . A few boundary conditions are imposed on this path integral:

A0+ie)=x, z2(0—ie)=y,  bO+is)= —b(—if)
z(t + ie) = x, zZ(t—ig) =y, bi(0 +ie)= —bl(—ip)
Cy(z(7))=0 for 7e(0—ie, —iff)

This path-integral formalism, as one can see, involves no specific
assumptions on either the environment or the system itself. In particular,
the usual tight-binding treatment”®) is not necessary. Nevertheless, in this
work, most of the time we shall set A, =0 and concentrate on the long-
time limit, where the time scale of the system is slow compared to that of
the environment, the latter typically characterized by the inverse of the
cutoff frequency of the environment. Several important examples will be
given.

3. LOCAL ADIABATIC TRANSFORMATION

In the case where the fermion field is noninteracting, the exponent in
Eq. (2.5b) is bilinear for the fermion variables, and thus, is subject to
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possible diagonalization. Suppose that one indeed can find a unitary trans-
formation T(z) such that

Ti(z)[E+ C(z)] T(z)=E (3.1)
where matrix notations are implied, with

E®)y=ed;,  (E)y=Ed, (C)

iYijs

C

g = Ly

The fields can be written in the corresponding vector notations, e.g.,
B = (b1, b3,..., bL,), B'=B'T

The transformed action becomes (writing down only the fermion part of
the action)

Sen=| do (B0, —E~T'(~i0,T)] B} (32)

One thus obtains the new coupling
C= —izT'(2)[0,T(z)] (3.3)

which is proportional to the “velocity” of the particle, indicating the nature
of the adiabatic transformation. Before proceeding further, one has to
determine the Jacobian of transformation for the path integral (2.5b). Note
that, for a given time,

[T db db,= [ {[ T (T db’z][f (1), dﬁ,}} (34)
i=1 i=1 k=1 I=1

Since the fields B, B are in Grassmann algebra, one has —db} db}. =
db}. db}, namely,

Q Q Q
n dbj’ = ‘: Z 811(!12,/}"2-:?,1(9(’1‘1-)1/(1 (TT)Zkz e (TT)QkQ] H dbj‘
i=1

i=1 kyka,kg=1

= (Det TT) ﬁ db? (3.5)

i=1

and likewise for the other part. Therefore, the Jacobian is simply the inverse
of (Det TT)(Det T)= 1. Eventually, one arrives at the new path-integral
expression for the function J,

Jx, y, t; x', y,0)= § Dz(t) exp {ifﬁdf [% mz? — V(z)} —trlog C} (3.6)
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where the Green’s function satisfies [the matrix products in Eq. (3.7a)
involve summations over time indices ]

G=G°+GYC+E-E)G (3.7a)
(10, — e )G®), (1, 7')=6,0,(t,7') (3.7b)

We need to worry a little about the boundary conditions and the
poorness of the new coupling® when © crosses over those ends at times 0, ¢.
For the original field B, its Green’s function satisfies the antiperiodic boun-
dary condition because the field does the same. But now

B0 +ie) =T (2(0+ i) B0 + ie) = —T*(2(0 + ie)) T(z(—iB)) B(—ip)

Thus, one sees a rather sophisticated boundary condition. However, an
easy way out of the difficulty is to add an extra infinitesimal time piece
—i8B (at = —iB) to the contour y to ensure the antiperiodicity of B,
namely z(—if—idf)=z(0+ie)=x', or equivalently z(r) obeying a
periodic boundary condition. As regards the poorness of C, the same trick
can be used by making z(t) join continuously across those ends. The fact
that these manipulations affect neither the original field B nor its Green’s
function legitimizes the procedure. In this way, we have the zeroth-order
Green’s function for Egs. (3.7),

(G%)y (1, 7) = —ide "~ [0,(z, T') — f(&)] (3.8)

where f(g;) is the Fermi distribution function and 6,(r, ') is the step
function on the contour 7.

4. COUPLING WITH IDENTICAL MATRIX ELEMENTS

Of particular interest is the simplest case where C, (%)= CF(X) [for
simplicity, we take F(£)=£], which forms the basis of all the further
developments. One needs to diagonalize the following Q x Q matrix:
M;=¢;6,;+ Cz. Assume for the moment that {e;,} is nondegenerate (the
case of degeneracy will be discussed later); it is then a simple exercise to
find that the new eigenvalues are the solutions of the equation

2 1 1
Z 3,——E+a=

i=1

0 (4.1)

¢ Note that there are no such problems for the corresponding Euclidean action in imaginary
time. Thus, some way out of this difficulty is desired.

822/49/3-4-27
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and the eigenstates are

1 Q 1 —1/2
(E)= 2
a(E) Bi_E{i§1 (Si“E)z} (42)
For a uniform equal-spacing energy spectrum, &, —¢; = go(i — j) = (i — j)/p,
(where p, is the density of states), Eq. (4.1) says (in the limit of infinite
number of states)

E=c+ arctan(np,Cz) (4.30)
TPo
Q 1 2 1 2 5
= 3b
3 (=) =(g) +@0 (43b)
The unitary transformation’ is then
(T);=adE;) (4.4a)
and the new coupling is
Q
(C),-j= 1z Z a(E;) 0,a,(E)) (4.4b)
k=1

Note that (C),,=0 and by virtue of the orthogonality one need not dif-
ferentiate on the normalization factor. For i+ j, one has

()= (d/dr){arctan[np,Cz(7)]}

=1 4.5
4 mpolE; — Ej) (43)

where Eqgs. (4.3) have been used.
Going back to Egs. (3.6) and (3.7), one can expand

—trlog G = —trlog G*—tr GYE—~E+C)
—%tr GE-E+C)GUE-E+C)+0(C%  (4.6)

In the right-hand side of Eq. (4.6), the first term will cancel with the nor-
malization of the path integral in Eq. (3.6); the second term is purely
adiabatic and will renormalize the particle potential V(z); only the third
term contains information on dissipation. After some algebra, one has

" In the case where {¢,} has degeneracies, { E;} does not exhaust all the states. Thus, Eq. (4.4a)
gives only the relevant part of the transformation. It is easy to show that the rest of the
whole transformation is confined within each of the degeneracies; cf. Section 5.
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—trlog G = —trlog G°—tr G%(E —E)

1
+ o ﬁ; dr dt’ 6y(z(1)) d(2{(1"))

X Y e Mg (2, 1) £(6)J[0,(2', 1)~ £(z,)]

0ij=1

i 5 1 & f('gi)_f(ej) 3
+2n23§dr 302 ,};1[ s }+0(C ) (4.72)
where some intermediate processes of integrating by parts® have been
performed to utilize the boundary conditions discussed above. d4(z(1))
is called the phase shift on the Fermi surface (to be discussed in the
Appendix),

Oo(z(1)) = —arctan[npyz(1)] (4.7b)

Equations (4.7) are identical to the previous result’®) (apart from some
possible adiabatic potential renormalization, which is beyond the scope of
this work, since it depends on the details of the high-energy cutoff of the
spectrum of the environment). The remaining algebra goes nearly the
same as before. For convenience, we simply quote the expression for the
Feynman influence functional ®:

i rt

d
FLzi. 2] =exp {h J, @ {[3; %(a(r))} 80(z2(%))
o d5
~dulz (e | S otz |
= [ [ (Loofz100) = dufaale))]

><K(T—T’)[5o(21(f’))—50(22(1'))1}} (4.8a)

where the contour has been separated into two branches and the Fourier
transform of K(¢) is

po

. (4.8b)

K(w) zg—coth

i

# An adiabatic potential term appears in Eq. (4.7a) (the last term in the right-hand side). It
however, will be canceled by the adiabatic part imbeded in the double-time integral.
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In the case where {¢;} is uniformly degenerate (e.g., spin degeneracy),
the result (4.8) remains the same provided one defines properly the total
density of states, although the situation is somewhat subtle {cf. Section 5).
There is a short discussion in the last section concerning possible spin com-
plications.

5. MANY ANGULAR MOMENTUM CHANNELS

In practice, the environment for certain systems is often known as
some sort of Fermi liquid, and the coupling between them then induces
scattering of fermions near the Fermi surface. Again we do not consider the
interactions between fermions. Consider the following Hamiltonian:

2

"tn

H=

V) + Bl(Vk,k'(X-)J’_ék,k’gk) by (5.1)
Kk’

2

S

where we have labeled the fermion states by their wave vectors k and k' as
usual. Since all relevant physical processes take place only near the Fermi
surface, the following expansion would be quite general:

0 . k-k’
ka z 2]+1 VIX)P[(W)

o0 I k kr
4 i X Im\ 737 Iﬂ;n T .
mL oL VY <|k|> <|k'|> (5:2)

The main task left is to find a unitary transformation to diagonalize (5.1);
for this we assert the following form:

Y,.(k/ |k
(T () = V() 2 LKD) (53)
&y — Enlm
where E,,, are the new eigenvalues given via
Yo (/K1) YK/ 1K) | SO _ 54)

4712
K

ex — Eopm Vi(z(z)) B

With regard to the summation over k, one can imagine that states are
divided into various energy shells with equal spacing between two
neighbors, and the degeneracy of each of the shells is large. Thus, one can
first sum over these degenerate states to obtain the factor 6,96,,,., then per-
form the usual procedure of summing over different energy shells as in the
last section. In fact, {E,,,} gives an alternative way of labeling the fermion
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states. In the limit of zero coupling, i.e., V/(%)—0, we have E,,, — EY,.,

which is nothing but an eigenenergy if we label the fermion states in terms
of angular momentum. It is not difficult to show

Y, (K/[K]) Y, (k/k|)

T'T o = N4 O nimn i 5.5
( )n/m,n I'm / U % (Sk _ En]m)2 nim,n'I'm ( )
Moreover, one gets, from Egs. (5.4) and (5.5),
Eppm=Ep, + —gp'— arctan[7mpo V(z)] (5.6a)
VZ
Ni=g————5 (5.6b)
T E T (npo VY

where g is the number of states in one energy shell and p, is the total
density of states (We do not include the spin of fermions, but it will be
discussed in the last section.) The new coupling is, for nlm #n'I'm’,

_ — igél]’émm’ d
ot =2 £ 5(6(0)) | 57)

where ¢, is the /th-channel phase shift (to be justified in the Appendix)

d,= —arctan wp, V,(z) (5.8)

The generalization of Egs. (4.7) and (4.8) to this section is obvious (the
same generalization is also obtained in previous work!®). Note that
(g/p0) X, — | dE,;, (I, m fixed) in the continuous limit.

6. A PARTICLE IN A FERMI LIQUID

To discuss, for example, the transport behavior of a particle in a
Fermi liquid (say, an electron gas), one needs to deal with the following
rather different situation:

-~

H=%+U )+ 2 {exp[—i(k— k)R]}b*Vubeﬁk b (61)
kk’

The phase exp(ik-R) contains essentially the coupling information.
However, it can be absorbed into b, resulting in a new “Lagrangian” for
the fermion field (keeping only the environmental part)

=Y bi[id, — e~k R()1 by — Y Bl Vy 1 by (6.2)
k

kk’
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Note that the same expansion for V, ;. as in Eq. (4.2) can be made, but V,
is now essentially independent of R(t). The same transformation (5.3)-(5.6)
in the last section can be applied here, and transforms k - R(t) into a new
form (the following expression includes the limit E,,, = E, ;)

_ NN [(d)dt) Spmym(T)]1 (11 )
(A )nlm,n’l’m’ - E E. . Vl Vl, (633)

nim ™ Hn'l'm

where S, ;,,-(t) is the matrix element
S/m,pm/(f)=fd9k Yi(k/|k|) k- R(7) Yy (k/|k]) (6.3b)

Choosing R along the z axis for the moment, one has the selection rule
I'=I+(—)1,m =m, and

S Y Dl L 6.3b"
it )= =1 s | KRG (630)

Note that
/—1

Z Slm,(l— 1)m(T) S(17 l)m,lm(r/)
m=—(I—1)
_ K*R (1) R.(7) ’i’
QI+ DRI-1),

/
(P—m?)==Kk*R,(t) R,(z') (64)
—(—1) 3
This is to be used in obtaining Eq. (6.6). In general, one should replace
R.(t) R(t') by R(r)-R(z") for rotational invariance. Also, using the
expression (5.8) for the phase shifts, one has
. PV
[1+ (mpoV))*] 2
S me(7) SIN(S; — 6,
(A)nlm,n’l'm’zg im () SID(O, — O/) (6.5b)
Tch(Enlm - En’[’m')
In parallel to the procedure of the last two sections, we have in Eq. (3.6)
[cf. Egs. (4.7)]

—trlog G = —trlog G°

(6.52)

sin §,=

1
+5- fﬁ dr di' {nR(t) “R(¢) j dE dE’

x e ME=EN = (1, v') — f(E)][0,(7, 1) -f(E')]}

J(E)— f(E)

+2—;5Edr{nR2(r)jdEdE' T }+0(A3) (6.62)
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where

0

2,
n=7Y, o KFsin(d,—6, ) (6.6b)
/=1

The same influence functional can be trivially written down in analogy
to Egs. (4.8). Here one sees that the original problem has been reduced to a
simple boson-bath problem with three-dimensional linear coupling. This
result differs from that claimed in Ref. 8, where one needs a large number
of baths of harmonic oscillators in order to complete the mapping. It is
also interesting to compare it with the result of Ref. 4, where a similar con-
clusion is found in the limit of small distance, ie., |[R(t)—R(z')| < [k, "
No such limitation is required for Eq. (6.6a). In the quasiclassical limit**!V
a quantum Langevin equation can be found, which then gives the viscosity
n as stated in Eq. (6.6b). This is in agreement with the formula used by
Echenique et al.'»

7. DISCUSSION

In this section, we discuss several interesting points concerning this
new method and comment on its relation to other work. The first point
concerns the spin complications, since fermions always have nonzero spins,
such as s=1/2 for an electron. If the coupling interaction in Eq. (2.1) does
not flip fermions into different spin states, then one can simply double (say,
for an electron gas) the number of the coupling channels in Section 5. The
other simple case is that the coupling is insensitive to the spin, namely, it
scatters the fermions regardless of their spin states. Again one can simply
double the total density of states. The real complications come from the
case in which the coupling is spin-dependent (similar to the Kondo
problem). This case is not intended here, but we suspect it can be incor-
porated into this work.

Another point concerns the convergence of the higher order con-
tributions. Throughout this work, only the second-order perturbations on
the new couplings are used. Remarkably, such a simple approach recovers
all the previous significant results‘>”®); the latter are claimed to be exact in
the long-time limit, i.e., the time scale of the system considered is much
longer than that of environment, typically characterized by the inverse of
the cutoff frequency w, of the spectrum of the environment. Thus, it is quite
possible that the second-order results here have the same status. Unfor-
tunately, we have not been able to show that all the higher order con-
tributions can be ignored in that limit; for example, they are O(|R|/w,).
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Adiabatic potential renormalizations are not well treated in this paper.
They are cutoff-dependent, and so are beyond the scope of this approach.
In previous work, ) very careful arguments are given on the separation of
adiabatic and dissipative contributions. A nice analytic expression is
presented there for a certain choice of the high-energy cutoff. Note that for
the problem considered in Section 6, there are no adiabatic potential shifts
due to the coupling, in agreement with the result of similar boson-bath
problems and Ref. 8.

For a surface problem such as quantum diffusion of heavy particles in
a metallic surface, the spherical symmetry breaks down, so that one cannot
directly make use of the spherical harmonics Y,,(k/|k|). In this situation
perhaps both the fermion field and the coupling should be rewritten in
proper form. The version of Section 6 needs to be revised because the trans-
formation used there no longer holds. One needs to find a new set of
orthogonal functions to complete the diagonalization. Nevertheless, this is
merely a matter of algebra. I suspect that the changes will only be
quantitative.’

Finally, we mention some other work relevant to the current problem.
Aslangul et al."** explore successfully the real-time dynamics for some
boson-bath problems by using a “displaced Hamiltonian.” This
Hamiltonian results from a direct unitary transformation in an operator
basis. However, for the fermion-bath problem, a similar technique does not
seem to reduce the complexity of the problem. On the other hand, our
results show the equivalence between the two kinds of baths. This allows
one to utilize those results on boson-bath problems.

For the transport properties, work ®!°) has been done based on a com-
bination of path-integral (tight-binding limit) and scaling techniques. The
results all indicate similarities to the behavior of boson-bath coupling. A
rather different approach!!®!”) agsociated with the Anderson orthogonality
theorem can also deal with several angular momentum channels. It will be
very interesting to explore the relations between these approaches.

APPENDIX. PHASE SHIFTS ON THE FERMI SURFACE

In the text, it is claimed that the quantity —arctan(np, V) is identical
to the phase phift of the /th (angular momentum) scattering channel
between the particle and a fermion on the Fermi surface. In this Appendix
we give a formal derivation of this claim, which allows one to check clearly
its validity, since, in principle, the determination of phase shifts is a com-
plicated matter.

From Egs. (123.15), (130.9), and (130.12) of Ref. 13, the scattering
amplitude can be expanded into
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f(n,n")= i Si21+1) P(n-n") (A1)
I=0
1 )
f1=ﬁ(€215’—1) (A2)

where §, is the /th-channel phase shift. The question here is whether it is
identical to the phase shift defined in the text in certain limit(s). In fact, in
the momentum representation, the scattering amplitude satisfies

! m !
S(n,n") = <27th> F(kn, kn") (A3)
where
2m dq Fk q) Vg,
_ e : A4
F(k, q) Vk,q hz J (27‘[)3 (27‘5)3 q,z __kz _ ZO ( )

If now the matrix element ¥, , is nonzero only within a thin layer of Fermi
surface, it is then fair to assume that F(k, q) only depends on the direction
of k, g within the layer and is zero outside it. However, even though the
layer is thin with respect to the Fermi sphere, it may well be large with
respect to the typical energy scale considered in a specific problem, for
example, the long-time limit of our problem. In such a case

2mf &q Fkq)V,,  imken
A2 0 (2n)® g —k2—i0 ~ H2(2n)?
where we have kept only the imaginary part coming from the vicinity of

the Fermi surface. After these arguments, one has (a unit volume of
normalization for plane waves is always assumed)

j A2, Fk, q) Vy.q (AS)

f ) = 790V — bio [ dQue f(0,0) Ve (A6)
Using expansions (Al) and (5.2), it is not difficult to find
_ =mpoV
fi= L +inpyV, (A7)
where we have used
mk . .
Po=7 52 (without spin) (A8a)
4
j dQ,. P,(n,n") P,(n", n') =21—J’:1 5.,P{n,w)  (addition theorem)
(A8b)
Comparing Eq. (A7) to Eq. (A2), one finds
o,= —arctan(np, V,) (A9)

®In fact, important progress has already been achieved, and will be presented elsewhere.
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